Menu

Bioactive neuropeptide from C4orf52

phoenixin gene

human phoenixin alignment


Alignment of amino acid sequences of rat hypothetical protein LOC501923 and human protein LOC389203 isoform 2.

sequence comparison phoenixin

Alignment of amino acid sequences of homologous proteins from different species show high evolution sequence conservation. Based on potential proteolytic cleavage sites, three C-terminal hypothetical peptides are predicted: Phoenixin-20 amide, Phoenixin15 (Phoenixin-14-Gly), and Phoenixin-14 amide.

sequence comparison phoenixin

Phoenixin as a biomarker for Alzheimer's Disease

Phoenixin is a pleiotropic peptide involved in reproduction, anxiety and recently also implicated in the control of food intake. Besides the 20-amino acid phoenixin, the 14-amino acid phoenixin-14 also shows bioactive properties. However, the expression sites of phoenixin-14 in the brain and peripheral tissues are not yet described in detail. Therefore, a mapping of the brain and peripheral tissues from male and female Sprague-Dawley rats with a specific phoenixin-14 antibody was performed using western blot and immunohistochemistry. High density of phoenixin-14 immunoreactivity was detected in the medial division of the brain central amygdaloid nucleus, in the spinal trigeminal tract and in the spinocerebellar tract as well as in cells between the crypts of duodenum, jejunum and ileum. Medium density immunoreactivity was observed in the bed nucleus of the stria terminalis, in the area postrema, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus nerve as well as in the peripheral parts of the islets of Langerhans in the pancreas. A low density of phoenixin-14 immunoreactivity was detected in the arcuate nucleus, the supraoptic nucleus and the raphe pallidus. After pre-absorption of the antibody with phoenixin-14 peptide, no immunosignals were observed indicating specificity of the antibody. Taken together, the widespread distribution of phoenixin-14 immunoreactivity gives additional rise to the pleiotropic functions of the peptide such as possible effects in gastrointestinal motility, immune functions and glucose homeostasis.

Prinz P, Scharner S, Friedrich T, et al. Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats. Biochem Biophys Res Commun. 2017;493(1):195-201.


BACKGROUND: Alteration in energy expenditure or metabolism is the most accused risk issue for the onset and for the course of neurodegenerative cognitive disorders. Neuropeptides are suggested to be related with learning and memory. Phoenixin (PNX) is the most recently reported neuropeptide and we aimed to compare the plasma level in people with subjective memory complaints, patients with mild cognitive impairment, and mild Alzheimer's disease (AD).
METHODS: Ninety two participants enrolled in the study. After screening tests, all participants were assessed with a neuropsychological battery for further cognitive evaluations. We used ELISA kit to assay the level of Human PNX.
RESULTS: Patients with AD were significantly older than people in subjective memory complaint group (p = 0.02). There was no significant difference between groups according to gender (p = 0.435). Mean plasma PNX level was not significantly different between groups (p = 0.279). Mean plasma PNX level in MCI group was positively correlated with BMI (r = 0.402 and p = 0.028), serum HDL level (r = 0.454 and p = 0.012), blood systolic pressure (r = 0.428 and p = 0.018) and negatively correlated with logical memory (r=-0.335 and p=0.031). The mean plasma PNX level was positively correlated with immediate recall in subjective memory complaint group (r = 0.417 and p = 0.034).
CONCLUSION: This study is the first studying the association of plasma PNX level and cognitive complaints or decline. The knowledge about the role, interaction, and physiological functions of PNX is lacking. Lower plasma PNX level might be important in prodromal stages as MCI and the predictive role of PNX should be investigated in further studies.

Yuruyen M, Gultekin G, Batun GC, et al. Int Psychogeriatr. 2017;:1-8.

Phoenixin (PNX) is a recently discovered neuropeptide shown to be involved in regulating the reproductive system, anxiety-related behaviors and pain though its receptor is still unknown. PNX-14, one of the endogenous active isoforms, is reported to regulate gonadotropin releasing hormone (GnRH) receptor expression and GnRH secretion. Because GnRH system is thought to be involved in the regulation of learning and memory processes, we hypothesized that PNX-14 might be mediate learning and memory. Here, we investigated the effects of PNX-14 in memory processes, using novel object recognition (NOR) and object location recognition (OLR) tasks. Our results revealed that intracerebroventricular (i.c.v.) injection of PNX-14 (25nmol) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-enhancing effects of PNX-14 were also seen when it was infused into the hippocampus. Moreover, these memory-improving effects of PNX-14 could be blocked by a GnRH receptor antagonist (Cetrorelix). The memory-improving effects of PNX-14 were not related to any effects on locomotor activity. Additionally, the results suggested that i.c.v. injection of PNX-14 mitigate the memory impairment induced by the amyloid-β1-42 (Aβ1-42) peptide and scopolamine. The present results indicate that PNX-14 facilitates memory formation and prolongs memory retention through activation of the GnRH receptor, and mitigates the memory-impairing effects of Aβ1-42 and scopolamine, suggesting that PNX-14 may be effective as a drug for enhancing memory and treating Alzheimer?s disease.

Jiang JH, He Z, Peng YL, et al. Brain Res. 2015;1629:298-308.


Phoenixin's role in anxiety

Phoenixin (PNX) is a 14-amino acid amidated peptide (PNX-14) or an N-terminal extended 20-residue amidated peptide (PNX-20) recently identified in neural and non-neural tissue. Mass spectrometry analysis identified a major peak corresponding to PNX-14, with negligible PNX-20, in mouse spinal cord extracts. Using a previously characterized antiserum that recognized both PNX-14 and PNX-20, PNX-immunoreactivity (irPNX) was detected in a population of dorsal root ganglion (DRG) cells and in cell processes densely distributed to the superficial layers of the dorsal horn; irPNX cell processes were also detected in the skin. The retrograde tracer, Fluorogold, injected subcutaneously (s.c.) to the back of the cervical and thoracic spinal cord of mice, labeled a population of DRG, some of which were also irPNX. PNX-14 (2, 4 and 8 mg/kg) injected s.c.to the nape of the neck provoked dose-dependent repetitive scratching bouts directed to the back of the neck with the hindpaws. The number of scratching bouts varied from 16 to 95 in 30 min, commencing within 5 min post-injection and lasted 10-15 min. Pretreatment of mice at -20 min with nalfurafine (20 μg/kg, s.c.), the kappa opioid receptor agonist, significantly reduced the number of bouts induced by PNX-14 (4 mg/kg) compared with that of saline-pretreated mice. Our results suggest that the peptide, PNX-14, serves as one of the endogenous signal molecules transducing itch sensation in the mouse.

Cowan A, Lyu RM, Chen YH, Dun SL, Chang JK, Dun NJ. Phoenixin: A candidate pruritogen in the mouse. Neuroscience. 2015;310:541-8.


Phoenixin was recently identified in the rat hypothalamus and initially implicated in reproductive functions. A subsequent study described an anxiolytic effect of the peptide. The aim of the study was to investigate a possible association of circulating phoenixin with anxiety in humans. We therefore enrolled 68 inpatients with a broad spectrum of psychometrically measured anxiety (GAD-7). We investigated men since a menstrual cycle dependency of phoenixin has been assumed. Obese subjects were enrolled since they often report psychological comorbidities. In addition, we also assessed depressiveness (PHQ-9) and perceived stress (PSQ-20). Plasma phoenixin levels were measured using a commercial ELISA. First, we validated the ELISA kit performing a spike-and-recovery experiment showing a variance of 6.7±8.8% compared to the expected concentrations over the whole range of concentrations assessed, while a lower variation of 1.6±0.8% was observed in the linear range of the assay (0.07-2.1ng/ml). We detected phoenixin in the circulation of obese men at levels of 0.68±0.50ng/ml. These levels showed a negative association with anxiety scores (r=-0.259, p=0.043), while no additional associations with other psychometric parameters were observed. In summary, phoenixin is present in the human circulation and negatively associated with anxiety in obese men, a population often to report comorbid anxiety.

Hofmann T, Weibert E, Ahnis A, et al. Phoenixin is negatively associated with anxiety in obese men. Peptides. 2017;88:32-36.


Due to the dynamic development of molecular neurobiology and bioinformatic methods several novel brain neuropeptides have been identified and characterized in recent years. Contemporary techniques of selective molecular detection e.g. in situ Real-Time PCR, microdiffusion and some bioinformatics strategies that base on searching for single structural features common to diverse neuropeptides such as hidden Markov model (HMM) have been successfully introduced. A convincing majority of neuropeptides have unique properties as well as a broad spectrum of physiological activity in numerous neuronal pathways including the hypothalamus and limbic system. The newly discovered but uncharacterized regulatory factors nesfatin-1, phoenixin, spexin and kisspeptin have the potential to be unique modulators of stress responses and eating behaviour. Accumulating basic studies revelaed an intriguing role of these neuropeptides in the brain pathways involved in the pathogenesis of anxiety behaviour. Nesfatin-1, phoenixin, spexin and kisspeptin may also distinctly affect the energy homeostasis and modulate food intake not only at the level of hypothalamic centres. Moreover, in patients suffered from anxiety and anorexia nervosa a significant, sex-related changes in the plasma neuropeptide levels occurred. It should be therefore taken into account that the targeted pharmacomodulation of central peptidergic signaling may be potentially helpful in the future treatment of certain neuropsychiatric and metabolic disorders. This article reviews recent evidence dealing with the hypothetical role of these new factors in the anxiety-related circuits and pathophysiology of anorexia nervosa.

Pa?asz A, Janas-kozik M, Borrow A, Arias-carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochem Int. 2018;113:120-136.


Phoenixin is an amidated neuropeptide, which is widely distributed in brain and periphery regions and is known for its key role in reproduction. Phoenixin-14 (PNX-14), one of the endogenous active isoforms, was reported to regulate pituitary gonadotrophin secretion by increasing the expression of the GnRH receptor mRNA. Studies showed that GnRH could regulate brain responses to anxiety. However, the role of PNX-14 in anxiety was largely unclear. Here, we investigated that the effects of PNX-14 in anxiety-related behavior in adult mice via the open field and elevated plus maze. PNX-14 was administered intracerebroventricularly (i.c.v.) in different doses (5, 10, 25 and 50nmol), and dose-dependently induced anxiolytic effects. Then this anxiolytic action was presented after PNX-14 injected into the anterior hypothalamic area (AHA), while PNX-14 infused into the amygdala did not exert anxiolytic effects. GnRH receptor antagonist (Cetrorelix) could significantly antagonize the anxiolytic effects of PNX-14, while Atosiban, a competitive vasopressin/oxytocin receptor antagonist could not. Moreover, PNX-14 could significantly lower the core temperature and Cetrorelix could block this effect of PNX-14. Additionally, the AHA infusion of PNX-14 (5nmol) increased the expression level of the GnRH mRNA in the hypothalamus and plasma concentrations of GnRH. Similarly, i.c.v. injection of PNX-20 also reduced the core temperature and exerted anxiolytic effects. Taken together, centrally injected PNX-14 generates anxiolytic effects in mice, via the activation of the AHA GnRH system.

Jiang JH, He Z, Peng YL, et al. Effects of Phoenixin-14 on anxiolytic-like behavior in mice. Behav Brain Res. 2015;286:39-48.

Phoenixin's role in cardiac modulation

BACKGROUND: Alteration in energy expenditure or metabolism is the most accused risk issue for the onset and for the course of neurodegenerative cognitive disorders. Neuropeptides are suggested to be related with learning and memory. Phoenixin (PNX) is the most recently reported neuropeptide and we aimed to compare the plasma level in people with subjective memory complaints, patients with mild cognitive impairment, and mild Alzheimer's disease (AD). METHODS: Ninety two participants enrolled in the study. After screening tests, all participants were assessed with a neuropsychological battery for further cognitive evaluations. We used ELISA kit to assay the level of Human PNX. RESULTS: Patients with AD were significantly older than people in subjective memory complaint group (p = 0.02). There was no significant difference between groups according to gender (p = 0.435). Mean plasma PNX level was not significantly different between groups (p = 0.279). Mean plasma PNX level in MCI group was positively correlated with BMI (r = 0.402 and p = 0.028), serum HDL level (r = 0.454 and p = 0.012), blood systolic pressure (r = 0.428 and p = 0.018) and negatively correlated with logical memory (r=-0.335 and p=0.031). The mean plasma PNX level was positively correlated with immediate recall in subjective memory complaint group (r = 0.417 and p = 0.034). CONCLUSION: This study is the first studying the association of plasma PNX level and cognitive complaints or decline. The knowledge about the role, interaction, and physiological functions of PNX is lacking. Lower plasma PNX level might be important in prodromal stages as MCI and the predictive role of PNX should be investigated in further studies.

Phoenixin is a pleiotropic peptide involved in reproduction, anxiety and recently also implicated in the control of food intake. Besides the 20-amino acid phoenixin, the 14-amino acid phoenixin-14 also shows bioactive properties. However, the expression sites of phoenixin-14 in the brain and peripheral tissues are not yet described in detail. Therefore, a mapping of the brain and peripheral tissues from male and female Sprague-Dawley rats with a specific phoenixin-14 antibody was performed using western blot and immunohistochemistry. High density of phoenixin-14 immunoreactivity was detected in the medial division of the brain central amygdaloid nucleus, in the spinal trigeminal tract and in the spinocerebellar tract as well as in cells between the crypts of duodenum, jejunum and ileum. Medium density immunoreactivity was observed in the bed nucleus of the stria terminalis, in the area postrema, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus nerve as well as in the peripheral parts of the islets of Langerhans in the pancreas. A low density of phoenixin-14 immunoreactivity was detected in the arcuate nucleus, the supraoptic nucleus and the raphe pallidus. After pre-absorption of the antibody with phoenixin-14 peptide, no immunosignals were observed indicating specificity of the antibody. Taken together, the widespread distribution of phoenixin-14 immunoreactivity gives additional rise to the pleiotropic functions of the peptide such as possible effects in gastrointestinal motility, immune functions and glucose homeostasis.

Phoenixin (PNX) is a recently discovered neuropeptide shown to be involved in regulating the reproductive system, anxiety-related behaviors and pain though its receptor is still unknown. PNX-14, one of the endogenous active isoforms, is reported to regulate gonadotropin releasing hormone (GnRH) receptor expression and GnRH secretion. Because GnRH system is thought to be involved in the regulation of learning and memory processes, we hypothesized that PNX-14 might be mediate learning and memory. Here, we investigated the effects of PNX-14 in memory processes, using novel object recognition (NOR) and object location recognition (OLR) tasks. Our results revealed that intracerebroventricular (i.c.v.) injection of PNX-14 (25nmol) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-enhancing effects of PNX-14 were also seen when it was infused into the hippocampus. Moreover, these memory-improving effects of PNX-14 could be blocked by a GnRH receptor antagonist (Cetrorelix). The memory-improving effects of PNX-14 were not related to any effects on locomotor activity. Additionally, the results suggested that i.c.v. injection of PNX-14 mitigate the memory impairment induced by the amyloid-?1-42 (Aβ1-42) peptide and scopolamine. The present results indicate that PNX-14 facilitates memory formation and prolongs memory retention through activation of the GnRH receptor, and mitigates the memory-impairing effects of A?1-42 and scopolamine, suggesting that PNX-14 may be effective as a drug for enhancing memory and treating Alzheimer's disease.

Jiang JH, He Z, Peng YL, et al. Phoenixin-14 enhances memory and mitigates memory impairment induced by Aβ1-42 and scopolamine in mice. Brain Res. 2015;1629:298-308.

Phoenixin as a biomarker for endocrine disorders

BACKGROUND: Polycystic ovary syndrome (PCOS) is commonly characterized by obesity, insulin resistance (IR), hyperandrogenemia and hirsutism. Following the reported relationship between phoenixin-14 and gonadotropin production in rat hypothalamic-pituitary-gonadal axis, the present study was designed to investigate the circulating concentrations of phoenixin-14 and their associations with the concentrations of sex hormones including luteinizing hormone (LH), follicular stimulating hormone (FSH), estradiol (E2), progesterone (P4) and total testosterone (TT) in PCOS patients.
METHODS: A total of 41 women with diagnosed PCOS using Rotterdam criteria and 37 healthy individuals were enrolled in the study.
RESULTS: Serum phoenixin-14 concentration in PCOS patients (n=41) was 0.515±0.044ng/ml, significantly higher than that in healthy controls (0.289±0.046ng/ml, n=37). PCOS patients had higher serum LH, dehydroepiandrosterone and fasting blood glucose concentrations, and higher index of homeostasis model of assessment-IR than those in healthy women. Correlation analysis showed significantly positive correlations of phoenixin-14 with LH, FSH, TT, P4, BMI and nesfatin-1 concentrations, and significantly negative correlations with E2 and serum insulin (FSI) concentrations, respectively.
CONCLUSIONS: Compared to control women, PCOS patients had significantly increased serum phoenixin-14, LH and androgen concentrations. The positive correlations of phoenixin-14 concentrations with LH and TT concentrations suggest a possible role of phoenixin-14 in the development of PCOS.

Ullah K, Ur rahman T, Wu DD, et al. Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome. Clin Chim Acta. 2017;471:243-247.

Phoenixin, a recently discovered 20-amino acid peptide was implicated in reproduction. However, the expression in food intake-regulatory nuclei such as the paraventricular nucleus, the arcuate nucleus and the nucleus of the solitary tract suggests an implication of phoenixin in food intake regulation. Therefore, we investigated the effects of phoenixin-14, the shorter form of phoenixin, on food intake following intracerebroventricular (icv) and intraperitoneal (ip) injection in ad libitum fed male Sprague-Dawley rats. Phoenixin-14 injected icv (0.2, 1.7 or 15nmol/rat) during the light phase induced a dose-dependent increase of light phase food intake reaching significance at a minimum dose of 1.7 nmol/rat (+72%, p<0.05 vs. vehicle) used for all further analyses. Assessment of the food intake microstructure showed an icv phoenixin-14-induced increase in meal size (+51%), meal duration (+157%), time spent in meals (+182%) and eating rate (+123%), while inter-meal intervals (-42%) and the satiety ratio (-64%) were decreased compared to vehicle (p<0.05). When injected icv during the dark phase, no modulation of food intake was observed (p>0.05). The light phase icv phoenixin-14-induced increase of water intake did not reach statistical significance compared to vehicle (+136%, p>0.05). The increase of food intake following icv phoenixin-14 was not associated with a significant alteration of grooming behavior (0.4-fold, p=0.377) or locomotion (6-fold, p=0.066) compared to vehicle. When injected ip at higher doses (0.6, 5nmol/kg or 45nmol/kg body weight) during the light phase, phoenixin-14 did not affect food intake (p>0.05). In summary, phoenixin-14 exerts a centrally-mediated orexigenic effect.

Schalla M, Prinz P, Friedrich T, et al. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides. 2017;96:53-60.


Sexual maturation and maintenance of reproductive function are regulated by neurohormonal communication between the hypothalamus, pituitary, and gonads (referred to as the HPG axis). Phoenixin (PNX) is a newly identified, endogenous peptide abundantly produced in the hypothalamus and shown to be an important mediator of ovarian cyclicity. However, the underlying mechanisms by which phoenixin functions within the HPG axis are unknown. Previous in vitro studies demonstrated a direct action of PNX on gonadotrophs to potentiate gonadotrophin-releasing hormone (GnRH) induced luteinizing hormone (LH) secretion. Therefore, we hypothesized that centrally derived phoenixin regulates the preovulatory LH surge required for ovarian cyclicity. We observed a significant dose-related increase in the level of plasma LH in diestrous, female rats that were given an intracerebroventricular injection of PNX compared with vehicle-treated controls. While this suggests that even under low-estrogen conditions, PNX acts centrally to stimulate the HPG axis, further characterization is contingent on the elucidation of its cognate receptor. Using the "deductive ligand receptor matching strategy," we identified the orphan G protein-coupled receptor, Gpr173, as our top candidate. In cultured pituitary cells, siRNA-targeted compromise of Gpr173 abrogated PNX's action to potentiate GnRH-stimulated LH secretion. In addition, siRNA-mediated knockdown of endogenous Gpr173, which localized to several hypothalamic sites related to reproductive function, not only significantly extended the estrous cycle but also prevented the PNX-induced LH secretion in diestrous, female rats. These studies are the first to demonstrate a functional relationship between PNX and Gpr173 in reproductive physiology and identify a potential therapeutic target for ovulatory dysfunction.

Stein LM, Tullock CW, Mathews SK, et al. Am J Physiol Regul Integr Comp Physiol. 2016;311(3):R489-96.


Introduction: Dynamic development of the biotechnology results in discovery and description of new neuropeptides, localized in different areas of the brain, which have a brought, multidirectional spectrum of activities, performed at the level of different neuronal pathways. Aim: (1) Review of literature concerning with newly-discovered neuropeptide – phoenixin (PNX) and (2) assessment of its distribution in hypothalamic structures of adult rats. Material and methods: (1) A search of available databases for articles about PNX; (2) evaluation of the distribution of PNX in hypothalamic structures of adult Sprague-Dawley (SD) rats with immunohistochemistry (IHC) and immunofluorescence (IFC), using the original antibody from Phoenix Pharmaceuticals. Results: (1) We found only 2 original papers and one proceeding; (2) we confirmed the presence of PNX in various structures of the hypothalamus of SD rats, both by IHC and IFC. Conclusions: PNX is a newly-discovered and still extremely poorly known neuropeptide, representing a unique class of hypothalamic regulatory factors. So far, we know only that it regulates the secretion of pituitary gonadotropins by modulating the expression of the receptor for gonadotropin-releasing hormone (GnRH-R). An initial study suggests, that PNX sensitize the pituitary to the action of releasing factors, rather than directly stimulates the exocytosis of secretory vesicles to pituitary endocrine cells. Immunohistochemical studies revealed PNX immunoreactivity in the rat hypothalamus, superficial dorsal horn, spinal trigeminal tract, nucleus of the solitary tract; and in a population of dorsal root, trigeminal and nodose ganglion cells. It was also observed that exogenously administered PNX may preferentially suppress visceral as opposed to thermal pain. Recent reports suggest that the mechanism of signal transduction activated by PNX is MAPK/ERK pathway.

Conference: Conference: IV Zjazd Polskiego Towarzystwa Neuroendokrynologii, At ?ód?, Volume: Endokrynologia Polska, 2014; 65(5): 430-431Conference: Conference: IV Zjazd Polskiego Towarzystwa Neuroendokrynologii, At ?ód?, Volume: Endokrynologia Polska, 2014; 65(5): 430-431

The hypothalamus regulates a number of autonomic functions essential for homeostasis; therefore, investigations concerning hypothalamic neuropeptides and their functions and distribution are of great importance in contemporary neuroscience. Recently, novel regulatory factors expressed in the hypothalamus have been discovered, of which nesfatin-1 and phoenixin (PNX), show intriguing similarities in their brain distributions. There are currently few studies characterizing PNX expression, so it is imperative to accurately trace its localization, with particular attention to the hypothalamic nuclei and nesfatin-1 co-expression. Using fluorescence and classical immunohistochemical stainings on adult rat brain, we visualized the potential co-expression of nesfatin-1 and PNX immunoreactive cells. We have demonstrated a distinct PNX-immunoreactivity in 21-32% of cells in the arcuate nucleus, paraventricular nucleus, ventromedial and lateral hypothalamus. Nesfatin-1 expression reached 45-68% of all neurons in the same sites, while co-expression was strikingly seen in the vast majority (70-86%) of PNX-immunoreactive neurons in the rat hypothalamic nuclei. Our results demonstrate for the first time, a wide distribution of PNX in the hypothalamus which could implicate a potential functional relationship with nesfatin-1, possibly in the regulation of the hypothalamic-pituitary-gonadal axis or other autonomic functions, which require further study.

Pa?asz A, Rojczyk E, Bogus K, Worthington JJ, Wiaderkiewicz R. The novel neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an immunohistochemical study. Neurosci Lett. 2015;592:17-21.

Normal anterior pituitary function is essential for fertility. Release from the gland of the reproductive hormones luteinising hormone and follicle-stimulating hormone is regulated primarily by hypothalamically-derived gonadotrophin-releasing hormone (GnRH), although other releasing factors (RF) have been postulated to exist. Using a bioinformatic approach, we have identified a novel peptide, phoenixin, that regulates pituitary gonadotrophin secretion by modulating the expression of the GnRH receptor, an action with physiologically relevant consequences. Compromise of phoenixin in vivo using small interfering RNA resulted in the delayed appearance of oestrus and a reduction in GnRH receptor expression in the pituitary. Phoenixin may represent a new class of hypothalamically-derived pituitary priming factors that sensitise the pituitary to the action of other RFs, rather than directly stimulating the fusion of secretary vesicles to pituitary membranes.

Yosten GL, Lyu RM, Hsueh AJ, et al. A novel reproductive peptide, phoenixin. J Neuroendocrinol. 2013;25(2):206-15.

level of immunoreactive Phoenixin in porcine (P) or bovine (B) tissues
The level of immunoreactive Phoenixin in porcine (P) or bovine (B) tissues were measured by using a specific RIA kit that recognizes both Phoenixin-20 amide and Phoenixin-14 amide.
HPLC profile and immunoreactivity of isolated peptides- In the heart homogenate extracts
HPLC profile and immunoreactivity of isolated peptides- In the heart homogenate extracts, the major peaks of phoenixin immunoreactive fractions were from the elutes at 26 and 27 min of the 1st HPLC column. The major immunoreactive fraction at 27 min of 1st HPLC contains peptide ions at MW 1583, 1641 and 2187 which were corresponding to the theoretical molecular weight of the peptides, Phoenixin-14 amide, Phoenixin-15 and Phoenixin-20 amide. In addition, the synthetic peptides, Phoenixin-14 amide, Phoenixin 15 and Phoenixin-20 amide eluted from the HPLC at 27 min and showed the same peak positions around the MW of 1583, 1641 and 2184 in mass spectrometry.
The 2nd HPLC profile, immunoreactivity and Mass spectrometry to identify the isolated peptides

The 2nd HPLC profile, immunoreactivity and Mass spectrometry to identify the isolated peptides- The fractions with highest immunoreactivity in 2nd HPLC were from the peak between 26 min and 27 min. The fraction collected at 26 min, the isolated peptide identified by Mass spectrometer were at MW 1582.3 and 1641 which represent Phoenixin-14 amide and Phoenixin-15.


Related Products

Catalog# Product Standard Size Price
079-03 Phoenixin-20 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) 200 µg $155
079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) 200 µg $124
H-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Antibody 100 µl $362
B-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Biotin Labeled 100 µg $362
B-G-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Biotin Labeled Purified IgG 50 µg $362
EK-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - EIA Kit 96 wells $465
FEK-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Fluorescent EIA Kit 96 wells $508
FEK-079-01CE Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Fluorescent EIA Kit, CE Mark Certified 96 wells $528
MB-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - MagBead (Magnetic Bead Linked Antibody) 1 ml $648
G-079-01 Phoenixin-14 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Purified IgG Antibody 200 µg $466
079-02 Phoenixin-15 (Human, Rat, Mouse, Porcine, Bovine, Canine) 200 µg $135
B-079-02 Phoenixin-15 (Human, Rat, Mouse, Porcine, Bovine, Canine) - Biotin Labeled 100 µg $362
B-079-03 Phoenixin-20 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - Biotin Labeled 100 µg $362
EK-079-03 Phoenixin-20 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - EIA Kit 96 wells $465
RK-079-03 Phoenixin-20 amide (Human, Rat, Mouse, Porcine, Bovine, Canine) - RIA Kit 125 tubes $597
079-30 Phoenixin-45 amide / C4orf52 (E5RH91) precursor amide (Human) 100 µg $362
079-13 Phoenixin-5 amide / C4orf52(Q8N5G0-2) (60-64) amide (Human, Rat, Mouse, Porcine, Bovine, Canine) 200 µg $62
079-26 Phoenixin-8 amide / C4orf52(Q8N5G0-2) (57-64) amide (Human, Rat, Mouse, Porcine, Bovine, Canine) 200 µg $124