Control of muscle formation by fusogenic micropeptide myomixer.

myomixer alignment
Skeletal muscle formation occurs through fusion of myoblasts to form multi-nucleated myofibers. From a genome-wide CRISPR loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84-amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.

Bi P, Ramirez-martinez A, Li H, et al. Science. 2017;356(6335):323-327.

The majority of studies on possible roles for collagen hydrolysates in human health have focused on their effects on bone and skin. Hydroxyprolyl-glycine (Hyp-Gly) was recently identified as a novel collagen hydrolysate-derived dipeptide in human blood. However, any possible health benefits of Hyp-Gly remain unclear. Here, we report the effects of Hyp-Gly on differentiation and hypertrophy of murine skeletal muscle C2C12 cells. Hyp-Gly increased the fusion index, the myotube size, and the expression of the myotube-specific myosin heavy chain (MyHC) and tropomyosin structural proteins. Hyp-Gly increased the phosphorylation of Akt, mTOR, and p70S6K in myoblasts, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited their phosphorylation by Hyp-Gly. LY294002 and the mammalian target of rapamycin (mTOR) inhibitor rapamycin repressed the enhancing effects of Hyp-Gly on MyHC and tropomyosin expression. The peptide/histidine transporter 1 (PHT1) was highly expressed in both myoblasts and myotubes, and co-administration of histidine inhibited Hyp-Gly-induced phosphorylation of p70S6K in myoblasts and myotubes. These results indicate that Hyp-Gly can induce myogenic differentiation and myotube hypertrophy and suggest that Hyp-Gly promotes myogenic differentiation by activating the PI3K/Akt/mTOR signaling pathway, perhaps depending on PHT1 for entry into cells.

Updates coming soon.

Related Products

Catalog# Product Standard Size Price
064-79 Myomixer (24-65) (Human) 100 µg $300
064-77 Myomixer (24-84) (Human) 100 µg $350
064-81 Myomixer (24-84) (Mouse) 100 µg $350
064-75 Myomixer (52-84) (Human) 100 µg $250
064-76 Myomixer (61-84) (Human) 100 µg $200