Human YP-30 and DCD-1

schematics dermcidin
Y-P30, the 30 amino acid N-terminal peptide of the dermcidin gene, has been found to promote neuronal survival and differentiation. Its early presence in development and import to the fetal brain led to the hypothesis that Y-P30 has an influence on proliferation, differentiation and migration. Neurospheres derived from neural stem cells isolated from E13 mouse cortex and striatal ganglionic eminences were treated with Y-P30, however, the proportion of progenitors, neurons and astrocytes generated in differentiation assays was not altered. A short Y-P30 treatment of undifferentiated striatal and cortical neurospheres failed to alter the proportion of BrdU-positive cells. A longer treatment reduced the percentage of BrdU-positive cells and GABA-immunoreactive neurons only in striatal spheres. The presence of Y-P30 enhanced migration of T24 human bladder carcinoma cells in a wound-healing assay in vitro. Further, Y-P30 enhanced migration of T24 cells, rat primary cortical astrocytes and PC12 cells in chemotactic Boyden chamber assays. Together, these findings suggest that a major function of Y-P30 is to promote migration of neural and non-neural cell types.

Dash-wagh S, Neumann JR, Veitinger S, et al. The survival promoting peptide Y-P30 promotes cellular migration. Mol Cell Neurosci. 2011;48(3):195-204.

BACKGROUND: The skin has evolved an epithelial defence mechanism which is characterized by antimicrobial peptides that inactivate various microorganisms and exhibit stimulatory activities bridging innate and adaptive immunity. Dermcidin (DCD) is a newly isolated antimicrobial peptide produced by the eccrine sweat glands in the skin. Recently, the DCD peptides DCD-1 and DCD-1L have been shown to display in vitro microbicidal activities against bacteria and viruses. OBJECTIVES: Because some skin-derived antimicrobial peptides activate keratinocytes, we investigated whether DCD-1L would also trigger keratinocyte activation.
METHODS: Normal human keratinocytes were used in this study. The ability of DCD-1L to induce the production of cytokines/chemokines by keratinocytes was determined by enzyme-linked immunosorbent assay, and various inhibitors were used to investigate the stimulatory mechanism of DCD-1L. Mitogen-activated protein kinase (MAPK) phosphorylation and NF-kappaB activation were analysed by Western blotting. RESULTS: DCD-1L stimulated keratinocytes to generate cytokines and chemokines including tumour necrosis factor-alpha, interleukin-8 (CXCL8), interferon-inducible protein 10 (CXCL10) and macrophage inflammatory protein-3alpha (CCL20). To determine the molecular mechanism involved, we showed that DCD-1L-mediated cytokine/chemokine production was controlled by both G-protein and MAPK pathways, as evidenced by the inhibitory effects of pertussis toxin and specific inhibitors for p38 and ERK, but not for JNK, on DCD-1L-induced keratinocyte activation. Furthermore, we confirmed that DCD-1L could induce phosphorylation of p38 and ERK, and noticeably upregulated NF-kappaB activation.
CONCLUSIONS: Taken together, the new activity of DCD-1L to stimulate the production of cytokines/chemokines by keratinocytes provides novel evidence for the implication of DCD, beyond its microbicidal ability, in skin immunity.

Niyonsaba F, Suzuki A, Ushio H, Nagaoka I, Ogawa H, Okumura K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br J Dermatol. 2009;160(2):243-9.

Dermcidin (DCD) is an antimicrobial peptide which is constitutively expressed in eccrine sweat glands. By postsecretory proteolytic processing in sweat, the DCD protein gives rise to anionic and cationic DCD peptides with a broad spectrum of antimicrobial activity. Many antimicrobial peptides induce membrane permeabilization as part of their killing mechanism, which is accompanied by a loss of the bacterial membrane potential. In this study we show that there is a time-dependent bactericidal activity of anionic and cationic DCD-derived peptides which is followed by bacterial membrane depolarization. However, DCD-derived peptides do not induce pore formation in the membranes of gram-negative and gram-positive bacteria. This is in contrast to the mode of action of the cathelicidin LL-37. Interestingly, LL-37 as well as DCD-derived peptides inhibit bacterial macromolecular synthesis, especially RNA and protein synthesis, without binding to microbial DNA or RNA. Binding studies with components of the cell envelope of gram-positive and gram-negative bacteria and with model membranes indicated that DCD-derived peptides bind to the bacterial envelope but show only a weak binding to lipopolysaccharide (LPS) from gram-negative bacteria or to peptidoglycan, lipoteichoic acid, and wall teichoic acid, isolated from Staphylococcus aureus. In contrast, LL-37 binds strongly in a dose-dependent fashion to these components. Altogether, these data indicate that the mode of action of DCD-derived peptides is different from that of the cathelicidin LL-37 and that components of the bacterial cell envelope play a role in the antimicrobial activity of DCD.

Senyürek I, Paulmann M, Sinnberg T, et al. Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(6):2499-509.

In this report, we describe the identification of a polypeptide survival-promoting factor that is produced by maternal and early postnatal peripheral blood mononuclear cells (PBMCs) of the immune system in Long-Evans rats and humans. The factor, termed Y-P30, most likely arises from proteolytic processing of a larger precursor protein and accumulates mainly in pyramidal neurons of the developing cortex and hippocampus but not in astrocytes. It was released from neurons grown in culture and substantially promotes survival of cells in explant monocultures of perinatal thalamus from the offspring. Y-P30 mRNA was not detectable in infant or adult brain and was present only in blood cells of pregnant rats and humans but not in nonpregnant controls. However, Y-P30 transcription could be induced in PBMCs of adult animals by a central nervous system lesion (i.e., optic nerve crush), which points to a potential role of the factor not only in neuronal development but also in neuroinflammation after white matter injury.


Landgraf P, Sieg F, Wahle P, Meyer G, Kreutz MR, Pape HC. A maternal blood-borne factor promotes survival of the developing thalamus. FASEB J. 2005;19(2):225-7.


Updates coming soon.

Related Products

Catalog# Product Standard Size Price
075-33 DCD-1L / Dermcidin (63-110) (Human) 100 µg $255
075-32 YP-30 / Dermcidin (20-49) (Human) 100 µg $122