Menu

Exendin-4 (Heloderma suspectum) - EIA Kit

Quantity:

Catalog #
Size
Price
EK-070-94 96 wells $549

  • Protocol:
  • View/Download (PDF) - for reference only
  • Sample Extraction: polaroid
    To reduce background noise for this kit, do not add EDTA to your samples. Heparin can be used as an alternative to EDTA for this kit.
  • Recommended
  • Sensitivity: polaroid
    Data may differ slightly based on lot.
  • 0.08 ng/ml
  • Linear Range: polaroid
    Data may differ slightly based on lot.
  • 0.08 - 0.86 ng/ml
  • Cross Reactivity:
  • Peptide %
     Exendin-4 (Heloderma Suspectum) 100
     Exendin-3 (9-39)-NH2 100
     Exendin-4 (3-39) 100
     Lixisenatide 100
     Glucagon (Human, Rat, Mouse, Porcine, Bovine) 0
     GLP-1 (7-36)-NH2 (Human, Rat, Mouse) 0
     GLP-1 (7-37) (Human, Rat, Mouse) 0
     GLP-2 (Human) 0
     Oxyntomodulin (Human, Rat, Mouse) 0

  • Intra-assay variation:
  • <10%
  • Inter-assay variation:
  • <15%
  • Storage:
  • Store the kit at 4°C
  • Disclaimer:
  • To reduce background noise for this kit, do not add EDTA to your samples.Heparin can be used as an alternative to EDTA for this kit.
  • MSDS:
  • View/Download(PDF)
Standard Curve:

C-terminal site-specific PEGylated Exendin-4 analog: A long-acting glucagon like Peptide-1 receptor agonist, on glycemic control and beta cell function in diabetic db/db mice. 
Tang D, Tian H, Wu J, et al. J Pharmacol Sci. 2018;138(1):23-30.

GLP-1 receptor agonists stimulate ANGPTL8 production through the PI3K/Akt pathway in a GLP-1 receptor-dependent manner. 
Liu J, Yang K, Xiao W, et al. Peptides. 2018;106:83-90.

The use of low molecular weight protamine to enhance oral absorption of exenatide.
Zhang L, Shi Y, Song Y, et al. Int J Pharm. 2018;547(1-2):265-273.

Replacement of the C-terminal Trp-cage of exendin-4 with a fatty acid improves therapeutic utility. 
Lee JG, Ryu JH, Kim SM, et al. Biochem Pharmacol. 2018;151:59-68.

Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. 
Chen C, Zheng H, Xu J, Shi X, Li F, Wang X. Daru. 2017;25(1):20.

In vitro and in vivo characterization of a novel long-acting GLP-1 receptor agonist, exendin-4–Fc fusion protein
Lian Lu, Xiaoqing Su, Yantai Wang et al., RSC Adv., 2017,7, 54178-54187 

An approach for half-life extension and activity preservation of an anti-diabetic peptide drug based on genetic fusion with an albumin-binding aptide. 
Kim D, Jeon H, Ahn S, Choi WI, Kim S, Jon S. J Control Release. 2017;256:114-120.

Population pharmacodynamic modeling of exenatide after 2-week treatment in STZ/NA diabetic rats.
Chen T, Kagan L, Mager DE. J Pharm Sci. 2013;102(10):3844-51.

Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT.
Chuang EY, Nguyen GT, Su FY, et al. Biomaterials. 2013;34(32):7994-8001.

Exenatide-loaded PLGA microspheres with improved glycemic control: in vitro bioactivity and in vivo pharmacokinetic profiles after subcutaneous administration to SD rats.
Xuan J, Lin Y, Huang J, et al. Peptides. 2013;46:172-9.

Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan.
Ahn S, Lee IH, Lee E, Kim H, Kim YC, Jon S. J Control Release. 2013;170(2):226-32.

Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model.
Kim PH, Lee M, Kim SW. J Control Release. 2012;162(1):9-18.

Sustained exendin-4 secretion through gene therapy targeting salivary glands in two different rodent models of obesity/type 2 diabetes.
Di pasquale G, Dicembrini I, Raimondi L, et al. PLoS ONE. 2012;7(7):e40074.

Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity.
Gong N, Ma A-N, Zhang L-J, et al. British Journal of Pharmacology. 2011;163(2):399-412.

Pharmacokinetic and Pharmacodynamic Modeling of Exendin-4 in Type 2 Diabetic Goto-Kakizaki Rats.
Gao W, Jusko WJ. The Journal of Pharmacology and Experimental Therapeutics. 2011;336(3):881-890.

Biochemical, pharmaceutical and therapeutic properties of long-acting lithocholic acid derivatized exendin-4 analogs.
Chae SY, Jin CH, Shin JH, et al. J Control Release. 2010;142(2):206-13.

Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides.
Kamei N, Morishita M, Takayama K. J Control Release. 2009;136(3):179-86.

Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model.
Samson SL, Gonzalez EV, Yechoor V, Bajaj M, Oka K, Chan L. Mol Ther. 2008;16(11):1805-12.