Exendin-4 (Heloderma suspectum) - EIA Kit, CE Mark Certified


Catalog #
EK-070-94CE 96 wells $572

  • Protocol:
  • View/Download (PDF) - for reference only
  • Sample Extraction: polaroid
    To reduce background noise for this kit, do not add EDTA to your samples. Heparin can be used as an alternative to EDTA for this kit.
  • Recommended
  • Sensitivity: polaroid
    Data may differ slightly based on lot.
  • 0.08 ng/ml
  • Linear Range: polaroid
    Data may differ slightly based on lot.
  • 0.08 - 0.86 ng/ml
  • Cross Reactivity:
  • Peptide %
     Exendin-4 (Heloderma Suspectum) 100
     Exendin-3 (9-39)-NH2 100
     Exendin-4 (3-39) 100
     Lixisenatide 100
     Glucagon (Human, Rat, Mouse, Porcine, Bovine) 0
     GLP-1 (7-36)-NH2 (Human, Rat, Mouse) 0
     GLP-1 (7-37) (Human, Rat, Mouse) 0
     GLP-2 (Human) 0
     Oxyntomodulin (Human, Rat, Mouse) 0

  • Intra-assay variation:
  • <10%
  • Inter-assay variation:
  • <15%
  • Disclaimer:
  • To reduce background noise for this kit, do not add EDTA to your samples.Heparin can be used as an alternative to EDTA for this kit.
  • MSDS:
  • View/Download(PDF)
Standard Curve:

Links to publications that use this kit:

C-terminal site-specific PEGylated Exendin-4 analog: A long-acting glucagon like Peptide-1 receptor agonist, on glycemic control and beta cell function in diabetic db/db mice. 
Tang D, Tian H, Wu J, et al. J Pharmacol Sci. 2018;138(1):23-30.

GLP-1 receptor agonists stimulate ANGPTL8 production through the PI3K/Akt pathway in a GLP-1 receptor-dependent manner. 
Liu J, Yang K, Xiao W, et al. Peptides. 2018;106:83-90.

The use of low molecular weight protamine to enhance oral absorption of exenatide.
Zhang L, Shi Y, Song Y, et al. Int J Pharm. 2018;547(1-2):265-273.

Replacement of the C-terminal Trp-cage of exendin-4 with a fatty acid improves therapeutic utility. 
Lee JG, Ryu JH, Kim SM, et al. Biochem Pharmacol. 2018;151:59-68.

Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. 
Chen C, Zheng H, Xu J, Shi X, Li F, Wang X. Daru. 2017;25(1):20.

In vitro and in vivo characterization of a novel long-acting GLP-1 receptor agonist, exendin-4–Fc fusion protein
Lian Lu, Xiaoqing Su, Yantai Wang et al., RSC Adv., 2017,7, 54178-54187 

An approach for half-life extension and activity preservation of an anti-diabetic peptide drug based on genetic fusion with an albumin-binding aptide. 
Kim D, Jeon H, Ahn S, Choi WI, Kim S, Jon S. J Control Release. 2017;256:114-120.

Pyung-Hwan Kim, Minhyung Lee, Sung Wan Kim, Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model.
J Control Release. 2012 Aug 20;162(1):9-18. doi: 10.1016/j.jconrel.2012.06.010. Epub 2012 Jun 15.

Di pasquale G, Dicembrini I, Raimondi L, et al. Sustained exendin-4 secretion through gene therapy targeting salivary glands in two different rodent models of obesity/type 2 diabetes.
PLoS ONE. 2012;7(7):e40074.

Nian Gong et al., Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity
Br J Pharmacol. 2011 May; 163(2): 399–412.

Wei Gao et al., Pharmacokinetic and Pharmacodynamic Modeling of Exendin-4 in Type 2 Diabetic Goto-Kakizaki Rats
J Pharmacol Exp Ther. 2011 March; 336(3): 881–890. doi: 10.1124/jpet.110.175752

Su Young Chaea, Cheng-Hao Jin et al., Biochemical, pharmaceutical and therapeutic properties of long-acting lithocholic acid derivatized exendin-4 analogs
Journal of Controlled Release Volume 142, Issue 2, 3 March 2010, Pages 206–213

Kamei et al. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides.
J Control Release. 2009 Feb 27. [Epub ahead of print]

Samson et al. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model.
Mol Ther. 2008 Nov;16(11):1805-12.