Amphibian Host Defense Peptides related to Diabetes
Abstract
Amphibian host-defense peptides with potential for Type 2 diabetes therapy – an updated
review
Abstract: Investigations conducted since 2018 have identified several host-defense peptides present in frog skin secretions whose properties suggest the possibility of their development into a new class of agent for Type 2 diabetes (T2D) therapy. Studies in vitro have described peptides that (a) stimulate insulin release from BRIN-BD11 clonal β-cells and isolated mouse islets, (b) display β-cell proliferative activity and protect against cytokine-mediated apoptosis and (c) stimulate production of the anti-inflammatory cytokine IL-10 and inhibit production of the pro-inflammatory cytokines TNF-α and IL-1β. Rhinophrynin-27, phylloseptin-3.2TR and temporin F are peptides with therapeutic potential. Studies in vivo carried out in db/db and high fat-fed mice have shown that twice-daily administration of [S4K]CPF-AM1 and [A14K]PGLa-AM1, analogs of peptides first isolated from the octoploid frog Xenopus amieti, over 28 days lowers circulating glucose and HbA1c concentrations, increases insulin sensitivity and improves glucose tolerance and lipid profile. Peptide treatment produced potentially beneficial changes in the expression of skeletal muscle genes involved in insulin signaling and islet genes involved in insulin secretion in these murine models of T2D. Lead compounds uncovered by the study of frog HDPs may provide a basis for the design of new types of agents that can be used, alone or in combination with existing therapies, for the treatment of T2D.
Mechanisms of action of the antidiabetic peptide [S4K]CPF-AM1 in db/db mice
Abstract: The antidiabetic effects and mechanisms of action of an analogue of a frog skin host-defence peptide belonging to the caerulein-precursor fragment family, [S4K]CPF-AM1 were investigated in db/db mice with a genetically inherited form of degenerative diabetes-obesity. Twice-daily treatment with the peptide (75 nmol/kg body weight) for 28 days significantly decreased blood glucose (P < 0.01) and HbA1c (P < 0.05) and increased plasma insulin (P < 0.05) concentrations with no effect on body weight, energy intake, body composition or plasma lipid profile. Peptide administration improved insulin sensitivity and intraperitoneal glucose tolerance. Elevated biomarkers of liver and kidney function associated with the db/db phenotype were significantly lowered by [S4K]CPF-AM1 administration. Peptide treatment significantly (P < 0.05) increased pancreatic insulin content and improved the responses of isolated islets to established secretagogues. Elevated expression of genes associated with insulin signalling (Slc2a4, Insr, Irs1, Akt1, Pik3ca, Ppm1b) in the skeletal muscle of db/db mice were significantly downregulated by peptide treatment. Genes associated with insulin secretion (Abcc8, Kcnj11, Slc2a2, Cacn1c, Glp1r, Gipr) were significantly upregulated by treatment with [S4K]CPF-AM1. Studies with BRIN-BD1I clonal β-cells demonstrated that the peptide evoked membrane depolarisation, increased intracellular Ca2+ and cAMP and activated the protein kinase C pathway. The data indicate that the antidiabetic properties of [S4K]CPF-AM1 mice are mediated by direct insulinotropic action and by regulation of transcription of genes involved in both the secretion and action of insulin. Musale V, Moffett RC, Owolabi B, Conlon JM, Flatt PR, Abdel-Wahab YHA. Mechanisms of action of the antidiabetic peptide [S4K]CPF-AM1 in db/db mice. Journal of Molecular Endocrinology. 2021;66(2):115-128.
A frog peptide provides new strategies for the intervention against skin wound healing
Abstract: Background: Amphibian derived pro-healing peptides as molecular probes might provide a promising strategy for development of drug candidates and elucidation of cellular and molecular mechanisms of skin wound healing. A novel skin amphibian peptide, OA-RD17, was tested for modulation of cellular and molecular mechanisms associated with skin wound healing.
Methods: Cell scratch, cell proliferation, trans-well, and colony formation assays were used to explore the pro-healing ability of peptide OA-RD17 and microRNA-632 (miR-632). Then, the therapeutic effects of OA-RD17 and miR-632 were assessed in mice,
diabetic patient ex vivo skin wounds and SD rats. Moreover, hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence staining were performed to detect skin wound tissue regeneration, inflammatory factors expression, and macrophage polarization. Finally, RNA sequencing, molecular docking, co-localization, dual luciferase reporter, real-time quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to explore the mechanism of OA-RD17 and miR-632 on facilitating skin wound healing. Results: The non-toxic peptide (OA-RD17) promoted macrophage proliferation and migration by activating MAPK and suppressed inflammation by inhibiting NF-κB. In keratinocytes, OA-RD17 inhibited excessive inflammation, and activated MAPK via the Toll-like receptor 4 (TLR4) to promote proliferation and migration, as well as up-regulate the expression of miR-632, which targeted GSK3β to activate Wnt/β-catenin to boost proliferation and migration in a positive feedback manner. Notably, OA-RD17 promoted transition from the inflammatory to proliferative stage, accelerated epidermal and granulation regeneration, and exhibited therapeutic effects on mouse and diabetic patient ex vivo skin wounds. MiR-632 activated Wnt/β-catenin to promote full-thickness skin wound healing in rats.
Conclusions: OA-RD17 exhibited promising therapeutic effects on mice (full-thickness, deep second-degree burns), and ex vivo skin wounds in diabetic patients by regulating macrophages proliferation, migration, and polarization (MAPK, NF-κB), and keratinocytes proliferation and migration (TLR4/MAPK/miR-632/Wnt/β-catenin molecular axis). Moreover, miR-632 also activated Wnt/β-catenin to promote full-thickness skin wound healing in rats. Notably, our results indicate that OA-RD17 and miR-632 are promising pro-healing drug candidates..
The direct binding of bioactive peptide Andersonin-W1 to TLR4 expedites the healing of diabetic skin wounds
Abstract: Background: Chronic nonhealing wounds remain a considerable challenge in clinical treatment due to excessive inflammation and impeded reepithelialization and angiogenesis. Therefore, the discovery of novel prohealing agents for chronic skin wounds are urgent and important. Amphibian-derived prohealing peptides, especially immunomodulatory peptides, provide a promising strategy for the treatment of chronic skin trauma. However, the mechanism of immunomodulatory peptides accelerating
the skin wound healing remains poorly understood.
Methods: The prohealing ability of peptide Andersonin-W1 (AW1) was
assessed by cell scratch, cell proliferation, transwell, and tube formation. Next, full-thickness, deep second-degree burns and diabetic full-thickness skin wounds in mice were performed to detect the therapeutic effects of AW1. Moreover, the tissue regeneration and expression of inflammatory cytokines were evaluated by hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry staining. Molecular docking, colocalization, and western blotting were used to explore the mechanism of AW1 in promoting wound healing. Results: We provide solid evidence to display excellent prohealing effects of AW1, identified as a short antimicrobial peptide in our previous report. At relative low concentration of nM, AW1 promoted the proliferation, migration, and scratch repair of keratinocyte, macrophage proliferation, and tube formation of HUVEC. AW1 also facilitated reepithelialization, granulation regeneration, and angiogenesis, thus significantly boosting the healing of full-thickness, deep second-degree burns and diabetic skin wounds in mice. Mechanistically, in macrophages, AW1 directly bound to Toll-like receptor 4 (TLR4) in the extracellular region and regulated the downstream nuclear factor-κB (NF-κB) signaling pathway to facilitate the inflammatory factor secretion and suppress excessive inflammation induced by lipopolysaccharide (LPS). Moreover, AW1 regulated macrophage polarization to promote the transition from the inflammatory to the proliferative phase and then
facilitated reepithelialization, granulation regeneration, and angiogenesis, thus exhibiting excellent therapeutic effects on diabetic skin wounds.
Conclusions: AW1 modulates inflammation and the wound healing process by the TLR4/NF-κB molecular axis, thus facilitating reepithelialization, granulation regeneration, and angiogenesis. These findings not only provided a promising multifunctional prohealing drug candidate for chronic nonhealing skin wounds but also highlighted the unique roles of “small” peptides in the elucidation of “big” human disease mechanisms.